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INTRODUCTION

In semitransparent materials where thermal radiation can

affect internal temperature distributions, transient behavior

has been studied much less than steady-state. To obtain

transient solutions, numerical procedures such as finite

difference and finite element methods have been used to solve

the radiative transfer relations coupled with the transient

energy equation. Some of the literature has been reviewed in

[l 3]. In [3] transient solutions were obtained for a layer

with a refractive index larger than one with external con-

vection and radiation at each boundary; these results using

the exact equations of radiative transfer will be used for

comparison with the present two-flux calculations.

Various multi-flux methods have been discussed [4] as a

simplitication for computing tile radiative flux term in the

energy, equation. For the general boundary conditions of

external convection and radiation on a layer with diffuse

interfaces it was shown in [5] that the two-flux method can

be used to predict accurate steady-state temperature dis-

tributions and heat fluxes. The purpose of this note is to

show that the two-flux method can be used to obtain tran-

sient solutions in materials with large refractive radices that

tire typical of ceramics. Good predictions of transient tem-

perature distributions are obtained as verified by comparison

with implicit numerical solutions from [3] where the exact

radiative transfer equations were used. The information on

transient behavior is of interest for computing heat transfer

performance in ceramics being developed for high tem-

perature use in advanced aircraft engines.

An advantage of the two-flux method is that isotropic

scattering is included without any additional complication.

Some transient results with large scattering tire given to illus-

trate scattering effects : the solutions in [3] are for absorption

only.

ANALYSIS

EnerKv and twoq/ux equations

A plane layer of thickness D. Fig. 1, is a heat conducting,

gray' emitting, absorbing, and isotropically scattering medium

with n _> I, and its boundaries are assumed diffuse. The layer

is initially at uniform temperature l; and is placed in sur-

roundings so each boundary receives radiative energy, and is

subject to convection. Transient temperature distributions

are to be obtained in the layer until steady-state is reached

corresponding to the external radiation and convection con-

ditions.

The transient energy equation in dimensionless form is [3]

g'l i':t I g'qr

Fr ?A'2 4 i'X" (I)

Properties are assumed independent of temperature. The

gradient of the radiative flux. ?qdX, r),,'_E¥, is obtained from

the two-flux relation using the Milne Eddington approxi-

mation [4, 6],

&_, (,V, :)

?X = _,l)( 1 --Q)[4VI:t4()(,Z) (_()(, Z)] (2)

where G(X, r) is related to qd, X, r) by the equation,

?G(,X', r)

7,_/" -- = 3k',/4r(-¥, r). (3)

The q, and (_are related to the positive and negative radiative

fluxes sho_n in Fig. 1 by _),(,_'. r) = q,_ (X. r) ¢_r (X. _) and

G(X, r) = 2[0 / (X, "/') -_(]r ('_', :)]"

Boumlary and initial com/iliovr_"

The con\eclive boundary conditions on the sides of the la}er

are

?X _ . = _,V[I,_-/(0, r)] (4a)
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Fig. 1. Geometry and nomenclature for transient radiation

and conduction in a semitransparent layer _ith isotropic

scattering.
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NOMENCLATURE

absorption coellicicnt in layer [m _]

the quantity 3_,iA I -_1

specific heat of radiating mediunl

[Jkg kK _]
thickness of semitransparent layer [m]

the flux quantity 2(qr' +q, ) (Win :];

convective heat transfer coefficients at

.v=0andD[Wm :K i]

dimensionless parameters, h+: a'l', _ and

h. '_T,'
tl_ermal conductiviD of layer [W m _ K _]

refractive index of layer
conduction radiation parameter, k/4aT, 'D

radiative flux m the x-direction [Wm :} ;

4, - q, ::_r'l,_,
external radiation fluxes incident at x = 0

and D [W m 2]
dimensionless radiation fluxes,

q. :aT_, .q,2/aT 4,
absolute temperature [K] ; t --: T/T,

Tg_, T_2 gas temperatures for convection at x = 0
and D [K]

t_, tg2 dimensionless gas temperatures, 1"_::7",,

T_2/T,
T, initial uniform temperature of layer (used

as a reference T) [K]
x coordinate in direction across layer [m] :

X -- x/D.

Greek symbols

0 time [s]

KD optical thickness of layer, (a + a,)D

p density of semitransparent medium
[kg m _]

p', p" internal and external reflectivities at a

boundary
a Stefan Boltzmann constant [W m 2 K 4]

a, scattering coefficient in layer [m _]
r dimensionless time, (4aT,+/pcD)O

scattering albedo, a,.."(a+aO.

II+?t 4,_r It(l, r)+_:1. (4b)/ix , = - ,

The radiati'_e boundary conditions must now be specitied

including the effects of internal and external rcllcctions at
thc surfilces. By considering the incident and rellected fluxes
at an interface the follov, ing boundary relations between (,

and (_, v,ere developed at each boundary [5]

(.[0. z) = 4 I -,o" I +p'q,i 2 q,(O,r) (5a)
I p' I p'

I p" "_1 + p'
(7(1.r) = 4 q,:+, q, tl.t). (5b)

I I," I -- p'

To begin the transient solution ofcquation ( I ) the specified
initial condition is a uniform temperature T(x.O)= 7", so

I(2(, 0) = 1. Initial distributions arc also needed for tTAX. 0)

and (TIA, t)L By differentiation, equations (2} and (3) can be
combined to elirninate either (7,(X. z-) or (,(X, r) to give a

second order eqnation for either of these quantities. With

t = I initially, these equations are sol,,ed analytically to give.

(7(X, 01 = ('_ e, '_ + (': e , ;;_+ 4n 2 (6a)

q,(X,O)= x lB((, e, ;_ (':e "B_) (6b)
.'_ KI)

_her¢ B = 31,'i3(1 -ill ('_ and (': are integration constants

thai are obtained by applying the botmdary conditions (5a)

and (5b) to equation (6a). The following quantities are
delincd :

:_= I :_I+P' x.B (7a)

I p, 31q,

l +p'x B
fi -= I + 2 (Tb)

1 p, 31,_

7--- fie'" {7ct

,5_e "++ (7d)

$1 =- 4n: +41-t!"Fht (7e)

$2 =- 4n 2 +4 I -- P"O,.,. [7f)

1 t;'

Then the integration constants are,

-flS2 +fiSt <Sa)

,:_S: -7S_ (Sb)
C2 - fl;.+:_fi.

Numerical solution

Starting with the initial I(X, O) and q,(),', 0) relations, equa-

tion (I) was integrated forward in time using the following

explicit finite-difference algorithm at the interior grid points :

NAt

;Ix,++_) : ;{x._)+ _Tff+,[t(,v+_x,_)

2t(X,r)+t(X-AX, r)l 4 ?)[ _." (9)

The t(r+Ar) at the boundaries were then evaluated using

equations (4a) and (4b) with a three-point difference

approximation for the temperature derivative

t(0, r+Ar)

I1_ AX

2,_,r Igl +4I(AX, r+AO /(2kX, r+kr)
(lOa)

3+ H_AX
2N

t(1,r+Ar)

/I,AX

S,N 1_2+41(1 AX, r+Ar)-t(l-2AX, r+Ar)
_ (10b)

H:AX
3+---

2N

After advancing t(X) each time increment the radianl flux

gradient in the last term in equation (9) must be advanced
to r+Ar. This was done by solving equations (2) and (3)

simultaneously for &X,t+f.r) and (hlX, t+Ar) using

t(X,r+Ar) on the right-hand side of equation (2i. Then

?qd)(, r + ArI/?X was evaluated from equation (2). The sire-
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ultaneous solution of equations (2) and (3) was carried out

using a fourth-order Runge Kutta method with a shooting

procedure to satisfy' the boundary conditions at X- 0 and

1. To begin the solution the value of _],(X = 0) from the

previous time step was used as an estimate, and the boundary
condition equation (5a) was solved for (7(X = 0). The solu-

tion was then carried out by Runge Kutla integration frorn

X = 0 to X- I. The values of 0r and (_ obtained at X - 1

were checked to see if they satisfy the boundary' condition in

equation (5by. An iteration was performed on 0r(X = 0) until

equation (5by was satisfied: the type of iterative method

used is described in [7]. The shooting method used here is

convenient for absorption optical thicknesses, aD < 8. This

two-point boundary value solution method becomes difficult

when there is a large aD that causes the conditions at the

two boundaries to become less directly' related. It is possible
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Fig 2 Two-flux lind exact results for transient temperature distributions in a layer initially, at uniform

temperature after exposure to radiation on one side and convective cooling on the other side ; no scattering.
-0. Parameters: N-0.1. _,,= 1.54, _7rZ-- 0.54. ttl =0. H_ = 1. t_z=0.5. (a) Optical thickness.

_,-,_= 0.5 ; (by optical thickness, _;_) = 2 : (c) optical thickness. _q_ = 5.
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thatother numerical techniques could partially eliminate this

dilliculty: a method using a Green's functiou is presently

being developed. Using the t(X) and (_(X) the radiant flux

gradient was evaluated from equation (2). The temperature
distribution was then advanced to the next time increment

using equations (9) and (10).

After checking various grid sizes it +,,as found that 41

eveul.v spaced points across the layer gave accurate solutions.

Corresponding to this grid size tAX= 0.025) and for

N = ILl, as used for the rest, Its given here. the Ar for a stable

explicit calcuhnion was estimated from the criterion tor solv-

ing the transient heat conduction equation. The value

Ar - 0.0025 provided stable solutions for all of the results
calculated here.

RESULTS AND DISCUSSION

The transient temperature distributions given here start

from a unilbrm initial temperature TIX, O)= 11 so thai

t(?¢, 0) - 1. Figure 2 shows typical comparisons of two-flux

results for ttX. r) with those from [3] using an implicit tinite-

difference method, and the exact equation of transfer to

e_aluate the radiative flux gradient in the energy equation.

"The layer is heated on the hot side (X = 0) by a radiative flux

equal to that from blackbody surroundings at T,_ = 1.57] ; at
)," 1, T,, = 0.5T, so there is a net radiative cooling at that
side. These illustrative results examine the thermal behavior

of a htyer that is convectively cooled only on the side away

from where the radiative heating occurs. This simuhttes pos-
sible conditions for the wall of a combustion chamber where

there is radiative heating from combustion gases on one side,

and that side is not being film cooled.

The three parts of Fig. 2 are lbr optical thicknesses of 0.5.
2 and 5 with no scattering. For _q, = 0.5 the layer is somewhat

optically thin. For _1_ = 2 the optical thickness is such that
maximum internal radiative effects are expected ; for h-_) - 5

the layer is somewhat optically thick. Each part of the ligurc
shows results lbrn = 1 and 2. The two-flux curves are solid

or tong dashes : the numerical results using the exact transfer

equations are medium or short dashes. When r = 1.5 the

temperatures are within t% of steady state. At X= 0 the

temperature profitcs have a zero derivative from the absence
of convective cooling at that boundary. The convective cool-

mg at .k = I produces a rapid temperature decrease near thai

boundary.
The results using the two-flux method agree within reason-

able error with predictions using the exact transfer equations.

The largest deviations, which are for _,_, - 0.5. are only a few

per cent, and agreement is much better for El, = 5. As n
increases, internal reflections make the temperature dis-

tributions more uniforrn. In most instances agreement of the
tv, o-flux results ,,','as a little better for n = I than for n = 2.

The effect of scattering is illustrated in Fig. 3 for n = 1 and

2. The optical thickness is constant, __+ - 5. so an increase

in scattering corresponds to a decrease in absorption. The

result is that the transient tcnlpcratures arc decreased with

increasing _. For n - 2 in Fig. 3(b) the lentperalures are

somewhat more unifl+rm than tbr n = 1 in Fig. 31a) [note

that the ordinate scales arc different in Figs. 3(a) and 3(b)]+

Compared with Fig. 3(a), increasing Xqin Fig. 31b) does not

have as large an effect in reducing the temperatures, For
n = 2 the layer has internal reflections that make scattering

ntore effective in augmenting :tbsorption. For _2 = 11.99 this

makes the temperatures larger for ** - 2 than for n -- 1.

CONCLUSIONS

The two-flux method was used to obtain transient solu-

tions lbr a plane htyer including internal reflections and scat-

tering. The layer was initially at unifurm temperature, and
'.'_as heated or cooled by external radiution and convection.

The two-flux equations were examined as a nleans for eva-

luating the radiative flux gradient in the transient energy

equation Comparisons of transient temperature dis-

tribt.tions using the two-flux method were made with resulls

where the radiative flux gradient was evaluated from the

exact radiative transfer equations. Good agreement was
obtained for optical thicknesses from 0.5 to 5 and for refrac-
tive radices of I and 2. Illustrative results obtained with the

two-flux method demonstrate the effect of isotropic scat-
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Fig, 3. Effect of scattering on temperature distributions m

a layer initially at uniform temperature after exposure to

radiation on one side and convective cooling on the other

side. Parameters: _,D= 5, N-0.1, 0, = 1.54, (i,e =0.54,

t1_ = 0, H, = I, tg,, = 0.5. [a) Refractive index, n - 1 : (b)
refractive index, n = 2.
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teringcoupledwithchangingtherefractiveindex.For small

absorption with large scattering the maximum layer tem-
perature is increased when the refractive index is increased.

For larger absorption the effect is opposite, and the

maximum temperature decreases with increased refractive
index.
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